MATH 1A - MOCK MIDTERM 2 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (15 points) Using the definition of the derivative, find $f^{\prime}(1)$, where $f(x)=\frac{1}{x}$.

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{\frac{1}{x}-1}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{\frac{1-x}{x}}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{1-x}{x(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{-(x-1)}{x(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{-1}{x} \\
& =-1
\end{aligned}
$$

2. (15 points) Using the definition of the derivative, calculate the derivative of $f(x)=\sqrt{x}+x$

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{x+\sqrt{x}-(a+\sqrt{a})}{x-a} \\
& =\lim _{x \rightarrow a} \frac{x+\sqrt{x}-a-\sqrt{a})}{x-a} \\
& =\lim _{x \rightarrow a} \frac{(x-a)+(\sqrt{x}-\sqrt{a})}{x-a} \\
& =\lim _{x \rightarrow a} \frac{x-a}{x-a}+\frac{\sqrt{x}-\sqrt{a}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{x-a}{x-a}+\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a} \\
& =\lim _{x \rightarrow a} 1+\lim _{x \rightarrow a} \frac{(\sqrt{x}-\sqrt{a})(\sqrt{x}+\sqrt{a})}{(x-a)(\sqrt{x}+\sqrt{a})} \\
& =1+\lim _{x \rightarrow a} \frac{x-a}{(x-a)(\sqrt{x}+\sqrt{a})} \\
& =1+\lim _{x \rightarrow a} \frac{1}{\sqrt{x}+\sqrt{a}} \\
& =1+\frac{1}{\sqrt{a}+\sqrt{a}} \\
& =1+\frac{1}{2 \sqrt{a}}
\end{aligned}
$$

Hence, $f^{\prime}(x)=1+\frac{1}{2 \sqrt{x}}$
3. (50 points, 5 points each) Find the derivatives of the following functions:
(a) $f(x)=\frac{x+e^{x}}{e^{x}+1}$

$$
f^{\prime}(x)=\frac{\left(1+e^{x}\right)\left(e^{x}+1\right)-\left(x+e^{x}\right)\left(e^{x}\right)}{\left(e^{x}+1\right)^{2}}
$$

(b) $f(x)=-\tan ^{-1}\left(\frac{1}{x}\right)$

$$
f^{\prime}(x)=-\frac{1}{1+\left(\frac{1}{x}\right)^{2}}\left(-\frac{1}{x^{2}}\right)=\frac{1}{x^{2}\left(1+\left(\frac{1}{x}\right)^{2}\right)}=\frac{1}{x^{2}+1}
$$

Note: $\tan ^{-1}(x)$ and $f(x)$ have the same derivative, so in fact, as we'll see later, this means that $\tan ^{-1}(x)=-\tan ^{-1}\left(\frac{1}{x}\right)+C$, that is $\tan ^{-1}(x)+\tan ^{-1}\left(\frac{1}{x}\right)=C$. To find C, plug in $x=1$, and you get $\tan ^{-1}(1)+\tan ^{-1}(1)=C$, so $\frac{\pi}{4}+\frac{\pi}{4}=C$, so $C=\frac{\pi}{2}$, and in fact, we get:

$$
\tan ^{-1}(x)+\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{2}
$$

W00000000W!!! :O How cool is that?
(c) $f^{\prime \prime}(x)$, where $f(x)=\sin (x) e^{x}$

$$
f^{\prime}(x)=\cos (x) e^{x}+\sin (x) e^{x}
$$

$$
f^{\prime \prime}(x)=-\sin (x) e^{x}+\cos (x) e^{x}+\cos (x) e^{x}+\sin (x) e^{x}=2 \cos (x) e^{x}
$$

(d) The equation of the tangent line to $y=\frac{e^{x}}{x}$ at the point $(1, e)$

$$
y^{\prime}=\frac{e^{x} x-e^{x}}{x^{2}}
$$

Slope $=y^{\prime}(1)=\frac{e-e}{1}=0$
Hence equation: $y-e=0(x-1)$, so $y=e$
(e) $f(x)=\ln \left(\sqrt{x^{2}+1}\right)$

$$
f^{\prime}(x)=\left(\frac{1}{\sqrt{x^{2}+1}}\right)\left(\frac{1}{2 \sqrt{x^{2}+1}}\right)(2 x)=\frac{x}{x^{2}+1}
$$

Note: A smarter way would be to notice that $f(x)=\frac{1}{2} \ln \left(x^{2}+\right.$ 1) (by properties of ln)
(f) $f(x)=\ln (\ln (\ln (x)))$

$$
f^{\prime}(x)=\left(\frac{1}{\ln (\ln (x))}\right)\left(\frac{1}{\ln (x)}\right)\left(\frac{1}{x}\right)
$$

(g) y^{\prime} where $x^{2}+x y+y^{2}=3$

$$
\begin{aligned}
2 x+y+x y^{\prime}+2 y y^{\prime} & =0 \\
y^{\prime}(x+2 y) & =-(2 x+y) \\
y^{\prime} & =-\frac{2 x+y}{x+2 y}
\end{aligned}
$$

(h) $f(x)=x^{\cos (x)}$

Logarithmic differentiation:

1) $y=x^{\cos (x)}$
2) $\ln (y)=\cos (x) \ln (x)$
3) $\frac{y^{\prime}}{y}=-\sin (x) \ln (x)+\cos (x) \frac{1}{x}$
4) $y^{\prime}=y\left(-\sin (x) \ln (x)+\frac{\cos (x)}{x}\right)=x^{\cos (x)}\left(-\sin (x) \ln (x)+\frac{\cos (x)}{x}\right)$
(i) y^{\prime} at $(0,-2)$, where $y^{2}\left(y^{2}-4\right)=x^{2}\left(x^{2}-5\right)$

$$
\begin{aligned}
2 y y^{\prime}\left(y^{2}-4\right)+y^{2}\left(2 y y^{\prime}\right) & =2 x\left(x^{2}-5\right)+x^{2}(2 x) \\
2(-2) y^{\prime}\left((-2)^{2}-4\right)+(-2)^{2}\left(2(-2) y^{\prime}\right) & =2(0)\left(0^{2}-5\right)+0^{2}(2 \times 0) \\
-4 y^{\prime}(0)+4(-4) y^{\prime} & =0 \\
-16 y^{\prime} & =0 \\
y^{\prime} & =0
\end{aligned}
$$

(j) y^{\prime}, where $x^{y}=y^{x}$ (Hint: Take ln's)

$$
\begin{aligned}
\ln \left(x^{y}\right) & =\ln \left(y^{x}\right) \\
y \ln (x) & =x \ln (y) \\
y^{\prime} \ln (x)+y \frac{1}{x} & =\ln (y)+x \frac{y^{\prime}}{y} \\
y^{\prime} \ln (x)+\frac{y}{x} & =\ln (y)+\frac{x y^{\prime}}{y} \\
y^{\prime}\left(\ln (x)-\frac{x}{y}\right) & =\ln (y)-\frac{y}{x} \\
y^{\prime} & =\frac{\ln (y)-\frac{y}{x}}{\ln (x)-\frac{x}{y}}
\end{aligned}
$$

4. (20 points) Remember that one of the following problems will be for sure on your exam:

Problem 1: Show that the equation of the tangent line to the ellipse:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

at the point $\left(x_{0}, y_{0}\right)$ is

$$
\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=1
$$

$\underline{\text { Slope: }}$

$$
\begin{aligned}
\frac{2 x}{a^{2}}+\frac{2 y y^{\prime}}{b^{2}} & =0 \\
y^{\prime}\left(\frac{2 y}{b^{2}}\right) & =-\frac{2 x}{a^{2}} \\
y^{\prime} & =-\frac{b^{2}}{a^{2}} \frac{2 x}{2 y} \\
y^{\prime} & =-\frac{b^{2}}{a^{2}} \frac{x}{y}
\end{aligned}
$$

Equation:
At $\left(x_{0}, y_{0}\right)$, the slope is $-\frac{b^{2}}{a^{2}} \frac{x_{0}}{y_{0}}$, so the equation of the tangent line at $\left(x_{0}, y_{0}\right)$ is:

$$
y-y_{0}=\left(-\frac{b^{2}}{a^{2}} \frac{x_{0}}{y_{0}}\right)\left(x-x_{0}\right)
$$

Simplification:
First of all, by multiplying both sides by $a^{2} y_{0}$, we get:

$$
\left(y-y_{0}\right)\left(a^{2} y_{0}\right)=-b^{2} x_{0}\left(x-x_{0}\right)
$$

Expanding out, we get:

$$
y a^{2} y_{0}-a^{2}\left(y_{0}\right)^{2}=-b^{2} x_{0} x+b^{2}\left(x_{0}\right)^{2}
$$

Now rearranging, we have:

$$
y a^{2} y_{0}+b^{2} x_{0} x=a^{2}\left(y_{0}\right)^{2}+b^{2}\left(x_{0}\right)^{2}
$$

Now dividing both sides by a^{2}, we get:

$$
y y_{0}+\frac{b^{2}}{a^{2}} x_{0} x=\left(y_{0}\right)^{2}+\frac{b^{2}}{a^{2}}\left(x_{0}\right)^{2}
$$

And dividing both sides by b^{2}, we get:

$$
\frac{y y_{0}}{b^{2}}+\frac{x_{0} x}{a^{2}}=\frac{\left(y_{0}\right)^{2}}{b^{2}}+\frac{\left(x_{0}\right)^{2}}{a^{2}}
$$

But now, since $\left(x_{0}, y_{0}\right)$ is on the ellipse, $\frac{\left(y_{0}\right)^{2}}{b^{2}}+\frac{\left(x_{0}\right)^{2}}{a^{2}}=1$, we get:

$$
\frac{y y_{0}}{b^{2}}+\frac{x_{0} x}{a^{2}}=1
$$

Whence,

$$
\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=1
$$

Problem 2: Show that the equation of the tangent line to the hyperbola:

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

at the point $\left(x_{0}, y_{0}\right)$ is

$$
\frac{x_{0} x}{a^{2}}-\frac{y_{0} y}{b^{2}}=1
$$

This is super similar to Problem 1:
Slope:

$$
\begin{aligned}
\frac{2 x}{a^{2}}-\frac{2 y y^{\prime}}{b^{2}} & =0 \\
y^{\prime}\left(-\frac{2 y}{b^{2}}\right) & =-\frac{2 x}{a^{2}} \\
y^{\prime} & =\frac{b^{2}}{a^{2}} \frac{2 x}{2 y} \\
y^{\prime} & =\frac{b^{2}}{a^{2}} \frac{x}{y}
\end{aligned}
$$

Equation:
At $\left(x_{0}, y_{0}\right)$, the slope is $\frac{b^{2}}{a^{2}} \frac{x_{0}}{y_{0}}$, so the equation of the tangent line at $\left(x_{0}, y_{0}\right)$ is:

$$
y-y_{0}=\left(\frac{b^{2}}{a^{2}} \frac{x_{0}}{y_{0}}\right)\left(x-x_{0}\right)
$$

Simplification:
First of all, by multiplying both sides by $a^{2} y_{0}$, we get:

$$
\left(y-y_{0}\right)\left(a^{2} y_{0}\right)=b^{2} x_{0}\left(x-x_{0}\right)
$$

Expanding out, we get:

$$
y a^{2} y_{0}-a^{2}\left(y_{0}\right)^{2}=b^{2} x_{0} x-b^{2}\left(x_{0}\right)^{2}
$$

Now rearranging, we have:

$$
y a^{2} y_{0}-b^{2} x_{0} x=a^{2}\left(y_{0}\right)^{2}-b^{2}\left(x_{0}\right)^{2}
$$

Now dividing both sides by a^{2}, we get:

$$
y y_{0}-\frac{b^{2}}{a^{2}} x_{0} x=\left(y_{0}\right)^{2}-\frac{b^{2}}{a^{2}}\left(x_{0}\right)^{2}
$$

And dividing both sides by b^{2}, we get:

$$
\frac{y y_{0}}{b^{2}}-\frac{x_{0} x}{a^{2}}=\frac{\left(y_{0}\right)^{2}}{b^{2}}-\frac{\left(x_{0}\right)^{2}}{a^{2}}
$$

But now, since $\left(x_{0}, y_{0}\right)$ is on the hyperbola, $\frac{\left(x_{0}\right)^{2}}{a^{2}}-\frac{\left(y_{0}\right)^{2}}{b^{2}}=1$, so $\frac{\left(y_{0}\right)^{2}}{b^{2}}-\frac{\left(x_{0}\right)^{2}}{a^{2}}=-1$, and we get:

$$
\frac{y y_{0}}{b^{2}}-\frac{x_{0} x}{a^{2}}=-1
$$

Whence,

$$
\frac{x_{0} x}{a^{2}}-\frac{y_{0} y}{b^{2}}=1
$$

Problem 3: Show that the sum of the $x-$ and y-intercepts of any tangent line to the curve $\sqrt{x}+\sqrt{y}=\sqrt{c}$ is equal to c.
$\underline{\text { Slope: }}$

$$
\begin{aligned}
\frac{1}{2 \sqrt{x}}+y^{\prime}\left(\frac{1}{2 \sqrt{y}}\right) & =0 \\
y^{\prime}\left(\frac{1}{2 \sqrt{y}}\right) & =-\frac{1}{2 \sqrt{x}} \\
y^{\prime} & =-\frac{\frac{1}{2 \sqrt{x}}}{\frac{1}{2 \sqrt{y}}} \\
y^{\prime} & =-\frac{2 \sqrt{y}}{2 \sqrt{x}} \\
y^{\prime} & =-\frac{\sqrt{y}}{\sqrt{x}}
\end{aligned}
$$

Equation: At $\left(x_{0}, y_{0}\right)$, the slope is $-\frac{\sqrt{y_{0}}}{\sqrt{x_{0}}}$, and so the equation of the tangent line at $\left(x_{0}, y_{0}\right)$ is:

$$
y-y_{0}=-\frac{\sqrt{y_{0}}}{\sqrt{x_{0}}}\left(x-x_{0}\right)
$$

y-intercept:
To find the y-intercept, set $x=0$ and solve for y :

$$
\begin{aligned}
y-y_{0} & =-\frac{\sqrt{y_{0}}}{\sqrt{x_{0}}}\left(0-x_{0}\right) \\
y-y_{0} & =-\frac{\sqrt{y_{0}}}{\sqrt{x_{0}}}\left(-x_{0}\right) \\
y-y_{0} & =\sqrt{y_{0}} \sqrt{x_{0}} \\
y & =y_{0}+\sqrt{y_{0}} \sqrt{x_{0}}
\end{aligned}
$$

x-intercept:
$\overline{\text { To find the } x}$-intercept, set $y=0$ and solve for x :

$$
\begin{aligned}
0-y_{0} & =-\frac{\sqrt{y_{0}}}{\sqrt{x_{0}}}\left(x-x_{0}\right) \\
-y_{0} & =-\frac{\sqrt{y_{0}}}{\sqrt{x_{0}}}\left(x-x_{0}\right) \\
x-x_{0} & =-\frac{\sqrt{x_{0}}}{\sqrt{y_{0}}}\left(-y_{0}\right) \\
x & =x_{0}+\sqrt{x_{0}} \sqrt{y_{0}}
\end{aligned}
$$

Sum:
The sum of the $y-$ and $x-$ intercepts is:

$$
\left(y_{0}+\sqrt{y_{0}} \sqrt{x_{0}}\right)+\left(x_{0}+\sqrt{x_{0}} \sqrt{y_{0}}\right)=x_{0}+2 \sqrt{x_{0}} \sqrt{y_{0}}+y_{0}
$$

But the trick is that:

$$
x_{0}+2 \sqrt{x_{0}} \sqrt{y_{0}}+y_{0}=\left(\sqrt{x_{0}}\right)^{2}+2 \sqrt{x_{0}} \sqrt{y_{0}}+\left(\sqrt{y_{0}}\right)^{2}=\left(\sqrt{x_{0}}+\sqrt{y_{0}}\right)^{2}
$$

But since $\left(x_{0}, y_{0}\right)$ is on the curve $\sqrt{x}+\sqrt{y}=\sqrt{c}$, we get $\sqrt{x_{0}}+\sqrt{y_{0}}=\sqrt{c}$.

And so, finally we get that the sum of the $x-$ and $y-$ intercepts is:

$$
x_{0}+2 \sqrt{x_{0}} \sqrt{y_{0}}+y_{0}=\left(\sqrt{x_{0}}+\sqrt{y_{0}}\right)^{2}=(\sqrt{c})^{2}=c
$$

Bonus 1 (5 points) Give examples of functions f and g with $f(x) \leq$ $g(x)$, but:
(i) $f^{\prime}(x) \leq g^{\prime}(x)$
(ii) $f^{\prime}(x)=g^{\prime}(x)$
(iii) $f^{\prime}(x) \geq g^{\prime}(x)$

Hint: If you want to, one of your functions can be the zero function!

Note: This problem is meant to show you that derivatives can behave in very strange ways. We've seen that this is not the case with limits, i.e. if $f(x) \leq g(x), \lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)$, and we will also see that this is not the case with integrals, i.e. if $f(x) \leq g(x)$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$. There is more excitement to come on the actual midterm :)
(i) $f(x)=0, g(x)=e^{x}$
(ii) $f(x)=x+1, g(x)=x+2(f(x)=0$ and $g(x)=1$ also works)
(iii) $f(x)=0, g(x)=\frac{1}{x^{2}}$

Bonus 2 (5 points)
(a) Let

$$
f(x)= \begin{cases}x \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Does $f^{\prime}(0)$ exist?

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x \sin \left(\frac{1}{x}\right)-0}{x}=\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)
$$

As the last limit does not exist, $f^{\prime}(0)$ DNE
(b) What about

$$
\begin{gathered}
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0\end{cases} \\
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{2} \sin \left(\frac{1}{x}\right)-0}{x}=\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0
\end{gathered}
$$

(by the squeeze theorem)

